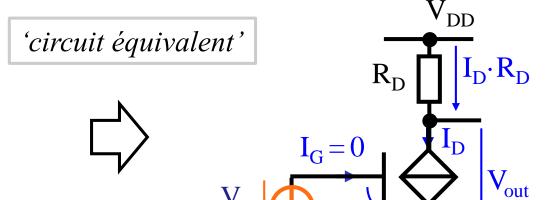
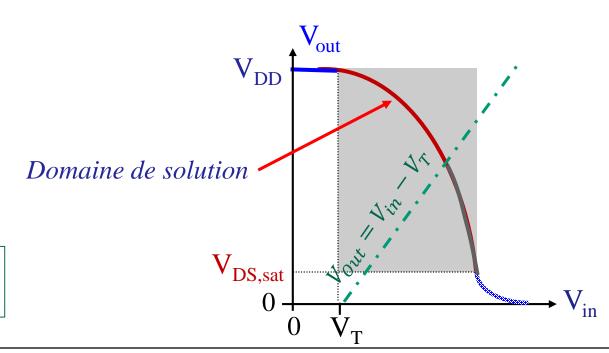

10. LA PAIRE DIFFÉRENTIELLE APPLICATION À L'AO


Initiation à l'électronique

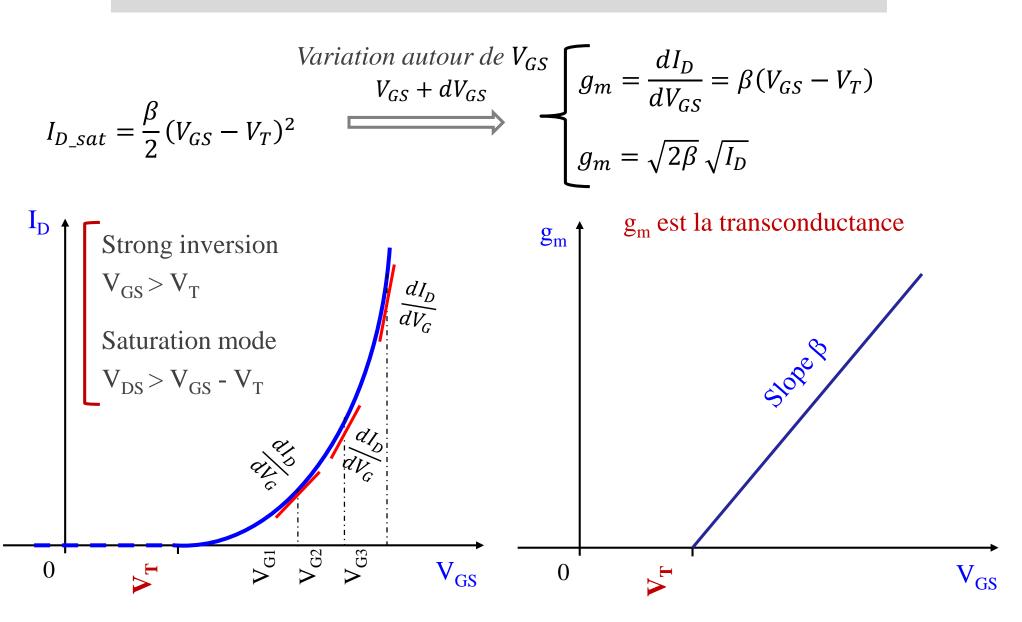
CE CHAPITRE NE SERA A L'EXAMEN

JEAN-MICHEL SALLESE

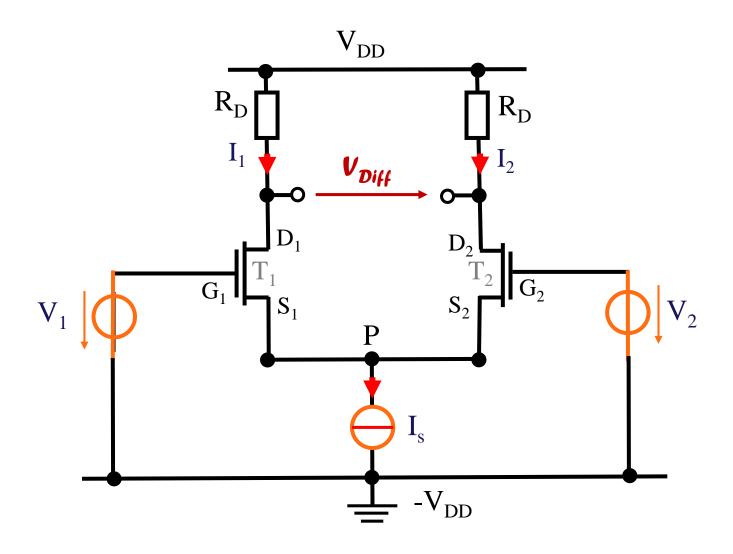
RAPPEL: AMPLIFICATEUR ÉLÉMENTAIRE



MOSFET en saturation


Si
$$V_{in} > V_{T}$$
 et $V_{out} \! > \! V_{GS}$ - V_{T}

$$I_D = \frac{\beta}{2} (V_{in} - V_{T0})^2$$


$$V_{Out} = V_{DD} - R_D \frac{\beta}{2} (V_{in} - V_T)^2$$

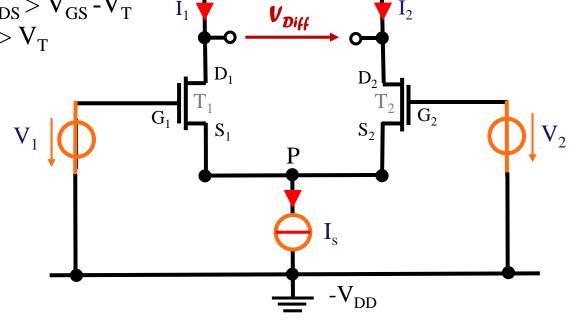
RAPPEL: ANALYSE PETITS SIGNAUX

LA PAIRE DIFFÉRENTIELLE: ARCHITECTURE

LA PAIRE DIFFÉRENTIELLE: ANALYSE GÉNÉRALE

 R_{D}

Hypothèses:


- Les transistors sont identiques (β et V_T idem)
- Les transistors sont en saturation $V_{DS} > V_{GS} V_{T}$
- Les transistors sont polarisés : $V_{GS} > V_{T}$

$$I_{1} = \frac{\beta}{2} (V_{G_{1}S_{1}} - V_{T})^{2}$$

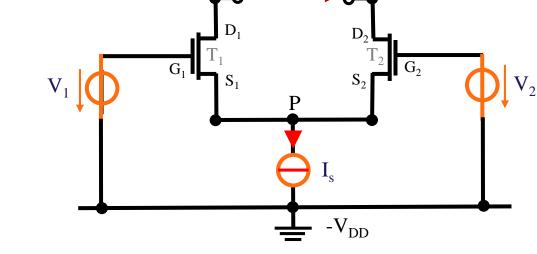
$$I_{2} = \frac{\beta}{2} (V_{G_{2}S_{2}} - V_{T})^{2}$$

$$I_1 = \frac{\beta}{2} (V_1 - V_P - V_T)^2$$

$$I_2 = \frac{\beta}{2} (V_2 - V_P - V_T)^2$$

 V_{DD}

La source de courant I_S impose: $I_S = I_1 + I_2$


On obtient l'équation suivante: $2(V_P + V_T)^2 - 2(V_1 + V_2)(V_P + V_T) + \left(V_1^2 + V_2^2 - 2\frac{I_S}{\beta}\right) = 0$

LA PAIRE DIFFÉRENTIELLE: ANALYSE GÉNÉRALE

La solution est:
$$V_P = \left(\frac{V_1 + V_2}{2}\right) - V_T \mp \sqrt{\frac{I_S}{\beta} - \left(\frac{V_1 - V_2}{2}\right)^2} \quad \mathbb{R}_D$$

La solution existe si:

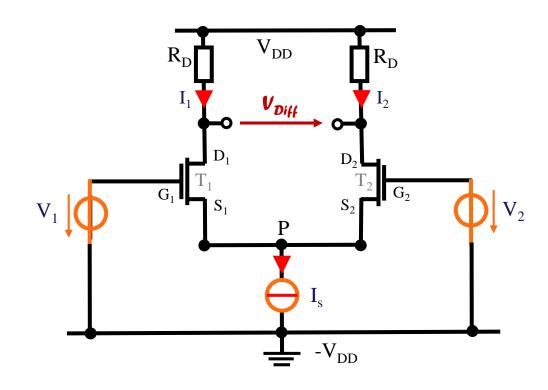
$$\left|\frac{V_1 - V_2}{2}\right| < \sqrt{\frac{I_S}{\beta}}$$

Choix de la solution: dans le cas particulier $V_1 = V_T$ et $V_2 = V_T$, on trouve $V_P = \mp \sqrt{I_S/\beta}$

Notons que pour qu'un courant puisse traverser les transistors, il faut que V_G soit plus grand que V_S , ce qui impose que V_P soit négatif dans ce cas précis.

On retiendra donc $V_P = -\sqrt{I_S/\beta}$

LA PAIRE DIFFÉRENTIELLE: LA TENSION DIFFÉRENTIELLE


Expression des courants:

$$I_{1} = \frac{\beta}{2} \left(V_{1} - \left(\frac{V_{1} + V_{2}}{2} \right) + \sqrt{\frac{I_{S}}{\beta} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2}} \right)^{2} = \frac{\beta}{2} \left(\left(\frac{V_{1} - V_{2}}{2} \right) + \sqrt{\frac{I_{S}}{\beta} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2}} \right)^{2}$$

$$I_{2} = \frac{\beta}{2} \left(-\left(\frac{V_{1} - V_{2}}{2}\right) + \sqrt{\frac{I_{S}}{\beta} - \left(\frac{V_{1} - V_{2}}{2}\right)^{2}} \right)^{2}$$

Si les tensions sont identiques, on retrouve :

$$I_1 = I_2 = \frac{I_S}{2}$$

LA PAIRE DIFFÉRENTIELLE: LA TENSION DIFFÉRENTIELLE

L'autre condition que nous avons supposé est que les transistors opèrent en saturation:

$$\begin{vmatrix}
V_{D_1 S_1} > V_{G_1 S_1} - V_T \\
V_{D_2 S_2} > V_{G_2 S_2} - V_T
\end{vmatrix} \implies \begin{cases}
V_{D_1 S_1} > V_1 - V_P - V_T \\
V_{D_2 S_2} > V_2 - V_P - V_T
\end{vmatrix}$$

Il faudra s'assurer après les calculs de V_p que ces conditions sont en effet bien satisfaites

Si tel est le cas, on en déduit la tension différentielle V_{diff}:

$$\begin{split} V_{D_{iff}} &= R_{D}(I_{2} - I_{1}) = \\ &\frac{R_{D}\beta}{2} \left(- \left(\frac{V_{1} - V_{2}}{2} \right) + \sqrt{\frac{I_{S}}{\beta}} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2} \right)^{2} - \frac{\beta}{2} \left(\left(\frac{V_{1} - V_{2}}{2} \right) + \sqrt{\frac{I_{S}}{\beta}} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2} \right)^{2} = \\ &\frac{R_{D}\beta}{2} \left(2\sqrt{\frac{I_{S}}{\beta}} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2} \right) \quad \left(- (V_{1} - V_{2}) \right) \quad = R_{D}\beta(V_{2} - V_{1}) \left(\sqrt{\frac{I_{S}}{\beta}} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2} \right) \\ &V_{D_{iff}} = R_{D}\beta(V_{2} - V_{1}) \left(\sqrt{\frac{I_{S}}{\beta}} - \left(\frac{V_{1} - V_{2}}{2} \right)^{2} \right) \end{split}$$

LA PAIRE DIFFÉRENTIELLE: ANALYSE PETITS SIGNAUX

Dans la pratique, nous avons vu que ce gain élevé était utilisé en reaction negative, et dès lors la difference de tensions aux entrées + et – pouvait être négligeable.

Il s'agit d'un cas de figure qui va simplifier les calculs.

Imposons $V_1 = V_2$ et intéressons nous à la variation de V_{diff} en function de la variation $V_1 - V_2$

$$V_{D_{iff}} = R_D \beta (V_2 - V_1) \left(\sqrt{\frac{I_S}{\beta} - \left(\frac{V_1 - V_2}{2}\right)^2} \right)$$

$$\frac{dV_{D_{iff}}}{d(V_2 - V_1)} = R_D \beta \left(\sqrt{\frac{I_S}{\beta} - \left(\frac{V_1 - V_2}{2}\right)^2} \right) + R_D \beta (V_2 - V_1) \left(\frac{-(V_1 - V_2)}{2\sqrt{\frac{I_S}{\beta} - \left(\frac{V_1 - V_2}{2}\right)^2}} \right)$$

$$\frac{dV_{D_{iff}}}{d(V_2 - V_1)} \bigg|_{V_2 = V_1} = R_D \beta \left(\sqrt{\frac{I_S}{\beta}} \right)$$

$$dV_{D_{iff}} = R_D \sqrt{\beta I_S} \ d(V_2 - V_1)$$

LA PAIRE DIFFÉRENTIELLE: ANALYSE PETITS SIGNAUX

Pour rappel, on a
$$g_{m1,2} = \sqrt{2\beta I_{1,2}}$$
 et $I_S = I_1 + I_2$

Donc
$$g_{m1,2} = g_m = \sqrt{\beta I_S}$$

Et finalement
$$dV$$

$$dV_{D_{iff}} = R_D g_m \ d(V_2 - V_1)$$

Le gain intrindèque de la paire différentielle est le produit de la résistance de drain et de la transconductance du MOSFET.

On remarque que le mode commun n'intervient pas, bien qu'il impacte le potential de la source des transistors.

LA PAIRE DIFFÉRENTIELLE: ANALYSE PETITS SIGNAUX

Il reste à verifier que les transistors T_1 et T_2 sont en saturation, c'est à dire :

$$V_{D_1S_1} > V_1 - V_P - V_T$$
 \Rightarrow $-R_D I_1 + V_{DD} - V_P > V_1 - V_P - V_T$
Soit $R_D < 2 \frac{V_{DD} - V_1 + V_T}{I_S}$

Dans le cas le plus défavorable, la tension en mode commun pourrait atteindre V_D , ce qui impose une limite inférieure à la résistance de drain

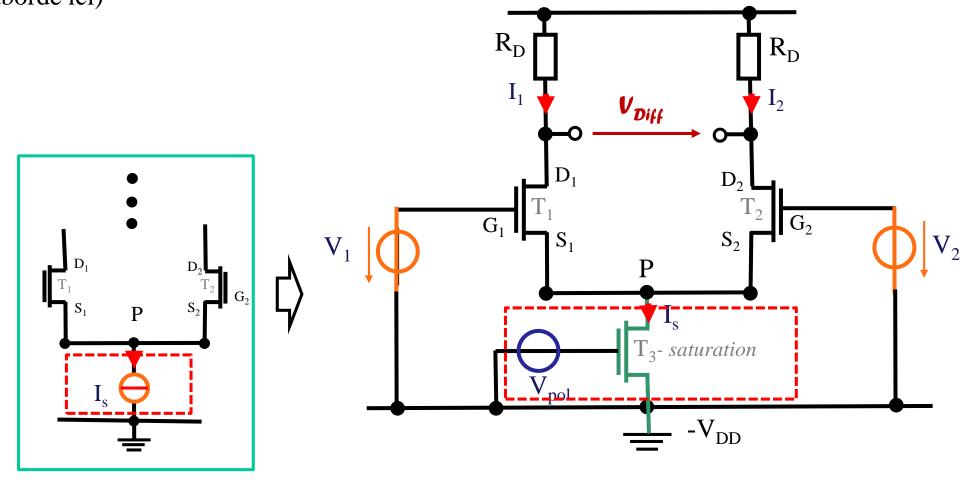
$$R_{D_min} = 2\frac{V_T}{I_S}$$

De même, la tension de seuil est typiquement de 0.3 volt, qui pourrait s'approximer à 0.5 V.

Une estimation de la résistance minimale au drain est donc $R_{D_min} = \frac{1}{I_S}$

Une estimation du gain minimum serait

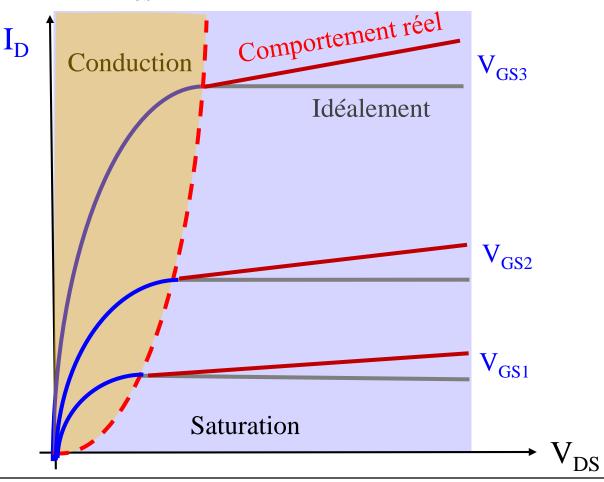
$$A_{min} = 2 \frac{V_T}{I_S} \sqrt{\beta I_S} = 2 V_T \sqrt{\frac{\beta}{I_S}} \cong \sqrt{\frac{\beta}{I_S}}$$


Si
$$I_S = 100 \mu A \ alors \ R_{D_min} = 10 kOhms$$

Si $\beta = 0.1$, $alors \ A_{min} = 31$

Nous sommes loin du gain élevé que l'on attendait d'un ampli Op...?

LA PAIRE DIFFÉRENTIELLE: LA SOURCE DE COURANT

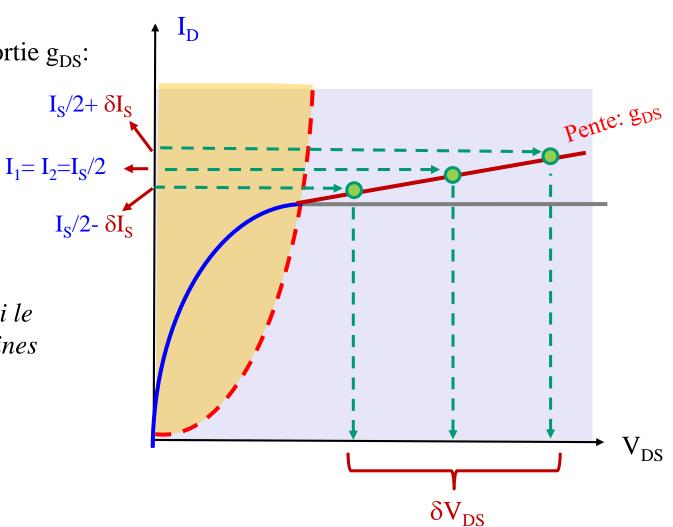

On a vu qu'un transistor en saturation agit comme une source de courant.

On introduit donc un transistor T_3 que l'on polarise de sorte qu'il laisse passer un courant I_S et que $V_p > V_{pol} - V_T$ (les dimensions de T_3 sont définies selon plusieurs critères qui ne seront pas abordé ici)

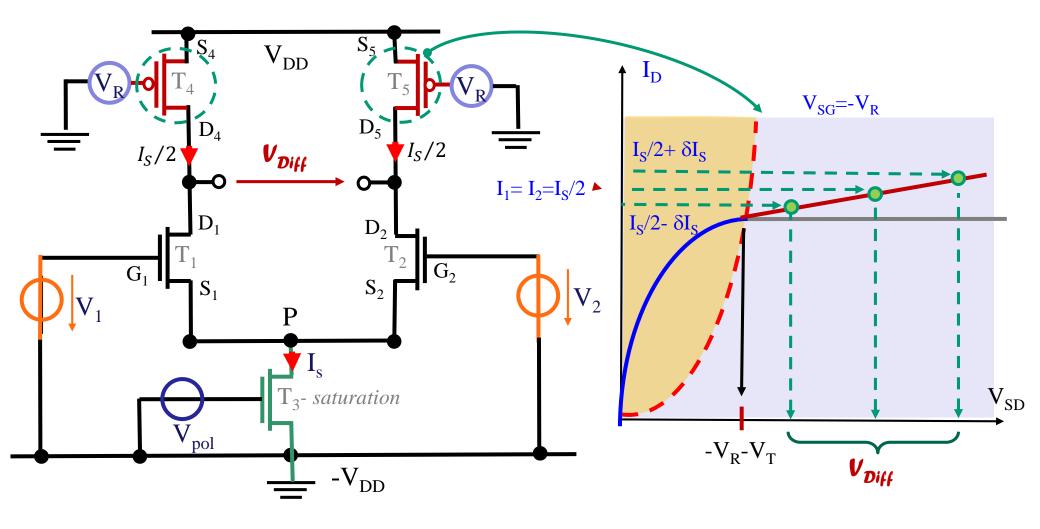
En réalité, un transistor MOSFET en saturation n'est pas une source de courant idéale. En changeant la tension V_{DS} , le courant va lui aussi changer très légèrement. On l'observe par la pente du courant I_D en fonction de V_{DS} .

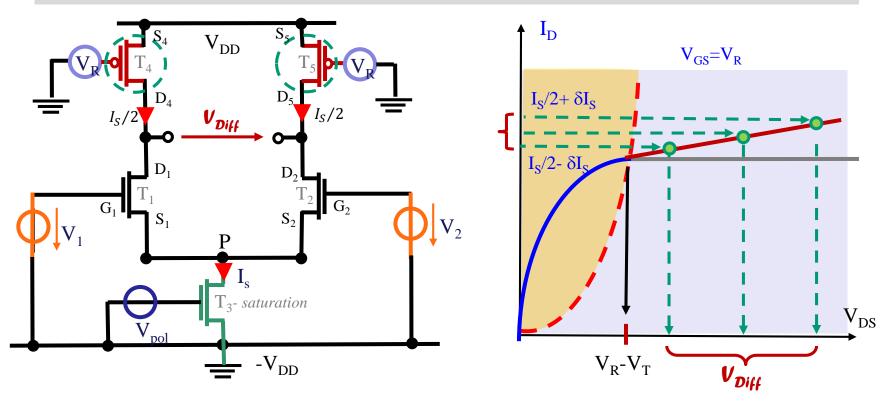
Cette pente s'accentue avec V_{GS}.

Cette variation du courant de sortie avec la tension V_{DS} , faible mais *non-nulle*, permet d'obtenir une amplification plus élevée au niveau de la tension du drain (V_{DS}) .


Cet effet se traduit à partir d'un parameter: la conductance de sortie g_{DS} :

$$g_{ds} = \frac{dI}{dV_{DS}} \bigg|_{Saturation}$$


L'inverse définit la résistance dynamique du transistor. Sa valeur peut être très grande si le


transistor mesure plusieurs dizaines micromètres de longueur.

$$R_{ds_dyn} = \frac{1}{g_{ds}} \bigg|_{Saturation}$$

Remplaçons alors les résistances R_D par des transistors PMOS en saturation T_4 et T_5 ... polarisés (V_R) de sorte que le courant qui les traverse soit $I_S/2$

Toute variation de courant δI_S dans les transistors T_1 et T_2 se traduira par une variation de tension V_{Diff} aux bornes des drains de T_4 et T_5 : D_4 et D_5 .

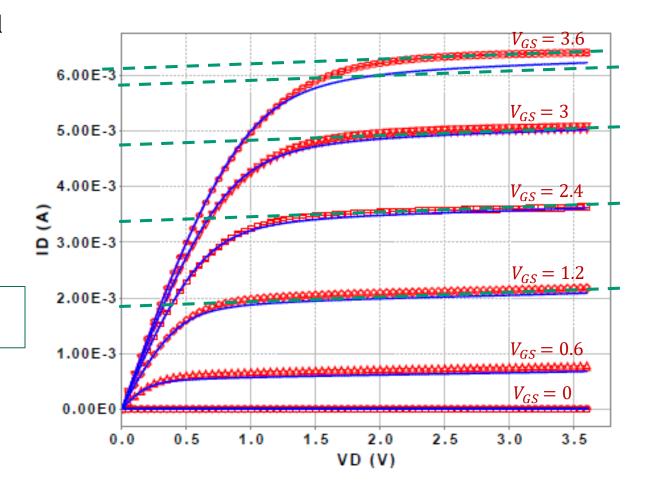
Cette variation n'est autre que V_{Diff} , ce qui donne le gain différentiel A_{Diff}

$$\delta I_{S} = g_{m} (V_{2} - V_{1})$$

$$\delta I_{S} = g_{DS} V_{Diff}$$

$$V_{D_{iff}} = \frac{g_{m}}{g_{DS}} (V_{2} - V_{1}) \implies A_{D_{iff}} = \frac{V_{D_{iff}}}{V_{2} - V_{1}} = \frac{g_{m}}{g_{DS}}$$

CONDUCTANCE DE SORTIE ET GAIN - EXEMPLE


NMOSFET Short Channel

- $W = 10 \mu m$
- $L=0.35 \mu m$

$$g_m \cong 2 \ 10^{-3} \ A/V$$

$$g_{DS} \cong 10^{-4} A/V$$

$$A_{D_{iff}} = \frac{V_{D_{iff}}}{V_2 - V_1} = \frac{g_m}{g_{DS}} = 20$$

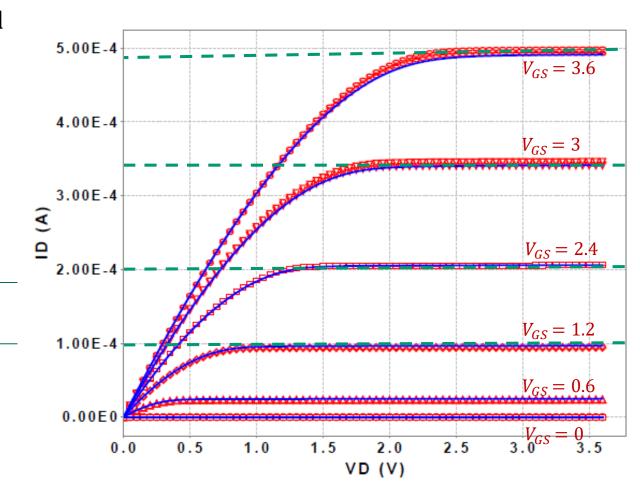
$$\delta I_S = g_m (V_2 - V_1)$$

$$\delta I_S = g_{DS} V_{Diff}$$

$$\Rightarrow$$

$$A_{D_{iff}} = \frac{V_{D_{iff}}}{V_2 - V_1} = \frac{g_m}{g_{DS}}$$

CONDUCTANCE DE SORTIE ET GAIN - EXEMPLE

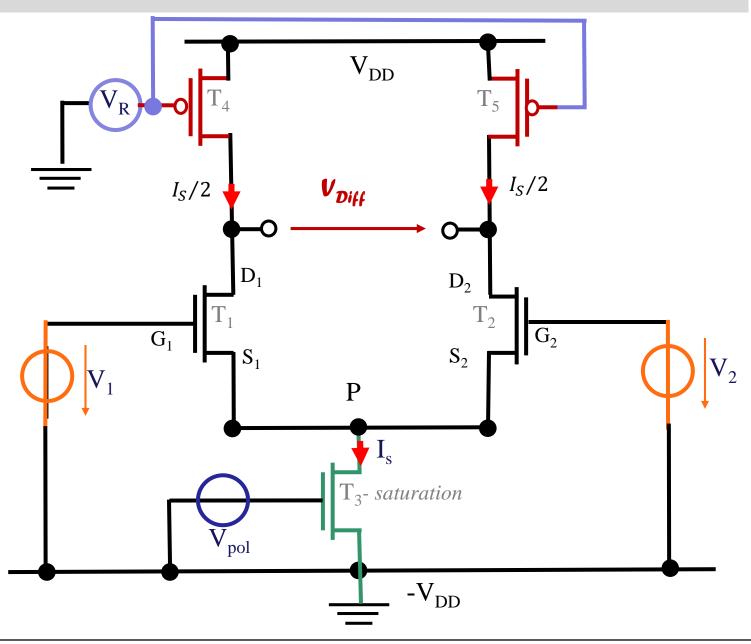

NMOSFET Long Channel

- $W = 10 \mu m$
- $L = 10 \mu m$

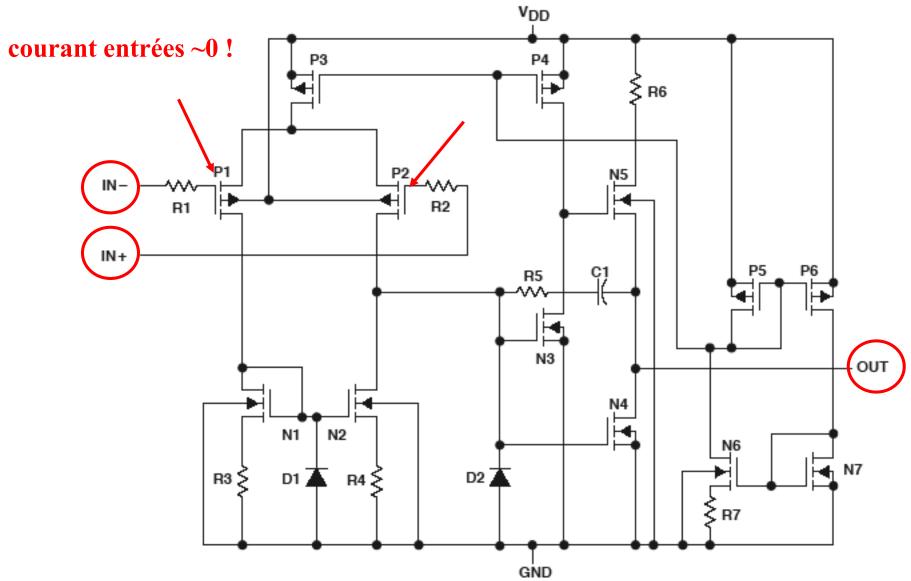
$$g_m \cong 2 \ 10^{-4} \ A/V$$

$$g_{DS} \cong 10^{-7} A/V$$

$$A_{D_{iff}} = \frac{v_{D_{iff}}}{v_2 - v_1} = \frac{g_m}{g_{DS}} = 2 \ 10^3$$


$$\delta I_S = g_m (V_2 - V_1)$$

$$\delta I_S = g_{DS} V_{Diff}$$


$$\Rightarrow$$

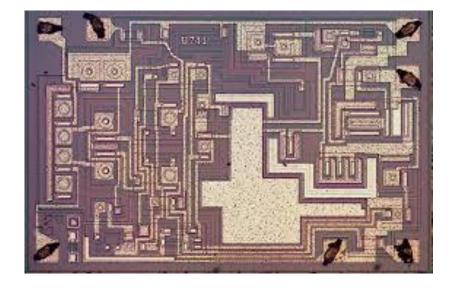
$$A_{D_{iff}} = \frac{V_{D_{iff}}}{V_2 - V_1} = \frac{g_m}{g_{DS}}$$

SOLUTION FINALE

Le cœur de l'amplificateur opérationnel

TLV2322: LinCMOS Low-Voltage Low-Power Operational Amplifier

En pratique


Exemple d'un ampli-op très Populaire: le LM741.

Le principe est le même, mais les transistors utilisés sont des transistors bipolaires et non des MOSFETs

https://www.righto.com/2015/10/inside-ubiquitous-741-op-amp-circuits.html

